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Abstract

Smartphone cameras are ubiquitous in daily life, yet their
performance can be severely impacted by dirty lenses, lead-
ing to degraded image quality. This issue is often over-
looked in image restoration research, which assumes ideal
or controlled lens conditions. To address this gap, we intro-
duced SIDL (Smartphone Images with Dirty Lenses), a novel
dataset designed to restore images captured through contam-
inated smartphone lenses. SIDL contains diverse real-world
images taken under various lighting conditions and environ-
ments. These images feature a wide range of lens contami-
nants, including water drops, fingerprints, and dust. Each con-
taminated image is paired with a clean reference image, en-
abling supervised learning approaches for restoration tasks.
To evaluate the challenge posed by SIDL, various state-of-
the-art restoration models were trained and compared on this
dataset. Their performances achieved some level of restora-
tion but did not adequately address the diverse and realistic
nature of the lens contaminants in SIDL. This challenge high-
lights the need for more robust and adaptable image restora-
tion techniques for restoring images with dirty lenses. Project
website: https://sidl-benchmark.github.io

Introduction
Smartphone cameras have become an essential tool in every-
day life. They capture moments and memories with ease and
convenience at home, at a party, at a pool, or on the beach.
However, the quality of images produced by these cameras
can be significantly compromised by a common yet often
overlooked issue: dirty lenses. Smartphone lenses frequently
contain contaminants such as water drops, fingerprints, and
dust, which can cause blurred, hazy, or distorted images. De-
spite its prevalence, this problem has received limited atten-
tion in image restoration, where research typically focuses
on hardware limitations or environmental conditions.

The existing works in image restoration have signifi-
cantly addressed challenges such as denoising, deblurring,
and super-resolution. However, these approaches often as-
sume that the images are captured under optimal camera
lens conditions, which do not fully reflect the complexi-
ties of real-world scenarios. Lens contamination introduces
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unique artifacts that differ from those typically addressed
in traditional image restoration tasks, requiring specialized
solutions. The contaminants in lenses scatter light or dis-
tort images. Figure 1 visualizes the characteristics of image
degradation through the contaminants, which differ in type.

To bridge this gap, we proposed SIDL (Smartphone Im-
ages with Dirty Lenses), a dataset for learning and evalu-
ating the restoration of images captured by contaminated
smartphone camera lenses. SIDL offers a diverse collec-
tion of real-world images taken in various lighting condi-
tions and environments (e.g. low-light indoor, normal-light
indoor, outdoor day, and outdoor night), with common lens
contaminants (e.g. water drop, fingerprint, dust, scratch, and
the mixture of contaminant types.) for 300 scenes, resulting
1,588 degraded images. The dataset pairs each degraded im-
age with a clean image, making it available for supervised
learning and reference-based image quality assessment.

SIDL’s challenge is its realistic and varied contamina-
tion patterns, which present significant obstacles to ex-
isting restoration models. To assess the efficacy of cur-
rent techniques in this context, we trained and tested sev-
eral state-of-the-art restoration models , AirNet (Li et al.
2022), NAFNet (Chen et al. 2022), Restormer (Zamir et al.
2022), FFTformer (Kong et al. 2023), DiffUIR (Zheng et al.
2024), AutoDIR (Jiang et al. 2023), and MambaIR (Guo
et al. 2024), on the SIDL dataset. As a result, these models
achieved some level of restoration. However, they struggled
to handle the diverse and complex contaminants in SIDL ef-
fectively. These results underscore the need to develop more
robust and adaptable restoration techniques to address the
challenges posed by lens contamination in the real world.

This paper details the construction of the SIDL dataset,
provides a thorough evaluation of existing restoration mod-
els on this dataset, and presents potential avenues for future
research in this underexplored area of image restoration.

Related Work
Image Restoration Datasets
Previous research has introduced numerous datasets to ad-
dress various types of image degradation and environ-
mental conditions. For traditional image restoration tasks,
datasets have been developed for deblurring (Nah, Kim,
and Lee 2017; Shen et al. 2019; Rim et al. 2020), super-
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-------------------------------
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-------------------------------
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Metrics for Case134_F:
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-------------------------------
PSNR: 22.0032
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Metrics for Case134_W:
-------------------------------
PSNR: 18.9345
SSIM: 0.8343
-------------------------------
Average Metrics for All Files:
Average PSNR: 23.9810, Average 
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조명 Case144 result
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-------------------------------
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-------------------------------
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-------------------------------
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PSNR: 24.1228
SSIM: 0.9097
-------------------------------
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-------------------------------
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Average PSNR: 26.0255, Average 
SSIM: 0.9224
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Figure 1: Overview of the proposed Smartphone Image with Dirty Lenses (SIDL) dataset. SIDL contains the original im-
ages and five realistic physical contaminant types: fingerprint, dust, scratch, water drop, and mixed types. It also includes a
control type of clean images without contaminants in our data acquisition setting. The unsatisfactory restoration results from
MambaIR (Guo et al. 2024) (top) and DiffUIR (Xia et al. 2023) (bottom) trained on SIDL highlight its challenges. While all
contaminants present the overall blurring effect, each type exhibits unique characteristics. Fingerprint leads to an overall de-
focus and blurring effect, Dust creates darker regions on the image, Scratch causes sharp and multidirectional light scattering,
Water results in circular light scattering, and Mixed type combines these distinct characteristics. These degradation similarities
and dissimilarities make the SIDL restoration more challenging.

resolution (Zhou et al. 2020; Zhang et al. 2021; Agustsson
and Timofte 2017; Timofte et al. 2017), and denoising (Plotz
and Roth 2017; Abdelhamed, Lin, and Brown 2018). These
datasets cover a range of degradation types and restora-
tion challenges. However, real-world scenarios often involve
more complex environmental factors. Several datasets have
been created for specific environmental conditions, such as
fog and haze (Ancuti et al. 2018b, 2019, 2018a), rain (Wang
et al. 2019; Li et al. 2019), and low-light (Wei et al. 2018;
Fu et al. 2023). These datasets facilitate the development of
robust algorithms for real-world environmental conditions.
Recently, few works have focused on the visual artifacts
caused by lens contamination. Wang et al. (Wang et al. 2023)
proposed a dataset for a single degradation type (Scratch),
and “Let’s see clearly” (Li et al. 2021) proposed a synthetic
dataset with explicit shapes of stains on the lens. However,
the previous dirty lens datasets are limited in scope. Our
dataset includes multiple real-world degradation types from
dirty lenses. Table 1 detailed the dataset characteristics.

Image Restoration Methods
Traditional image restoration approaches can be catego-
rized into model-based methods (Buades, Coll, and Morel
2005; Protter et al. 2008; He, Sun, and Tang 2010) and

optimization-based methods (Dabov et al. 2007; Gu et al.
2014; Farsiu et al. 2004). Following recent breakthroughs
in deep neural networks, various approaches have emerged,
addressing a wide range of restoration tasks such as super-
resolution (Dong et al. 2014; Lim et al. 2017), denois-
ing (Zhang et al. 2017), deblurring (Nah, Kim, and Lee
2017; Jiang et al. 2020; Zhang et al. 2019; Park et al.
2020), dehazing (Cai et al. 2016; Ren et al. 2016) and de-
rain (Fu et al. 2017; Li et al. 2018; Ren et al. 2019; Yang
et al. 2020). However, these methods often rely on spe-
cific degradation assumptions and may lack the general-
ization ability to handle diverse degradations. To address
this limitation, recent approaches like NAFNet (Chen et al.
2022) with non-linear activation functions, and transformer-
based models (Zamir et al. 2022; Kong et al. 2023) have
emerged as versatile solutions. Further advancing this trend,
researchers developed multi-degradation or all-in-one mod-
els (Chen et al. 2021; Li, Tan, and Cheong 2020) capable
of addressing various restoration problems simultaneously.
More recently, diffusion-based methods (Zheng et al. 2024;
Jiang et al. 2023; Kawar et al. 2022; Xia et al. 2023) and
linear state space models like MambaIR (Guo et al. 2024)
have emerged, showing promising results in diverse image
restoration tasks. Here, we evaluated and analyzed the state-
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Type Dataset Resolution Device Real / Synthetic Multiple
Distortions

RAW Data
Available

Ref
images

Distort
images

Deblurring
GOPRO 1280× 720 Digital camera Synthetic ✗ ✗ 3,214 3,214

HIDE 1280× 720 Digital camera Synthetic ✗ ✗ 8,422 8,422

RealBlur 680× 773 Digital camera Synthetic ✗ ✗ 232 4,738

Denoising
SIDD 5312× 2988 Smartphone Real ✗ ✓ 200 30,000

DND 7360× 4912 Smartphone Real ✗ ✓ 50 50

Environmental
conditions

O-HAZE 5456× 3632 Digital camera Real ✗ ✓ 45 45

Dense-Haze 5456× 3632 Digital camera Real ✗ ✓ 33 33

MPID 1920× 990 Digital camera Both ✓ ✗ 4,543 4,543

LOL 400× 600 Digital camera Real ✗ ✗ 500 500

Dirty lens
Wang et al. 1920× 1080 Digital camera Real ✗ ✗ 1,251 1,251

Let’s see clearly 384× 384 Digital camera Synthetic ✓ ✗ 18,000 18,000

SIDL (Ours) 4032× 3024 Smartphone Real ✓ ✓ 300 1,588

Table 1: Comparison with image restoration datasets. Prior dirty lens works captured real single degradation (Wang et al. 2023)
or generated synthetic data (Let’s see clearly), while our SIDL dataset presents real multiple degradations, including RAW data.

of-the-art models on the SIDL dataset to highlight the chal-
lenges in restoring images with dirty lenses.

The SIDL Dataset
Image Acquisition Setup
To acquire the SIDL dataset, we used an iPhone 12 Pro with
a fixed 26mm focal length camera. Figure 2 visualizes a cus-
tom smartphone camera setup to capture images with vari-
ous lens degradations for a scene. We used a tripod and a
Bluetooth remote controller to minimize camera shakes dur-
ing image capture. Our setup’s key component is a custom
‘Film holder,’ created using Maya 3D modeling software, as
shown in Figure 2(a). The film holder holds the ‘Dirty film’
close to the smartphone camera lens. It includes a small ex-
ternal frame to insert and secure the ‘Dirty film.’ This frame
includes a thin groove that helps maintain a close distance
between the film and the lens while preventing movement
during image capture.

Dirty Film Setup
We used various materials to simulate common contami-
nants in smartphone camera lenses, creating diverse and re-
alistic dirty lens effects. We applied these materials to thin
PVC films with a refractive index and reflectance similar to
glass.

Each type of films replicates specific environmental con-
ditions or common causes of lens degradation. The follow-
ing descriptions detail the process of creating each type of
dirty films:

• Original: We captured images using the clean camera
lens without any added filters or simulated effects.

• Clean: We captured images with clean PVC films with-
out any applied materials or simulated degradation.

• Dust: We simulated dust on a camera lens by sprinkling
tiny threads and sand onto a film. We secured the parti-
cles between two films to replicate various forms of dust
(e.g. fibers, dirt, sand) and their static cling.

• Fingerprint: Fingerprints are a common type of dirt
found on smartphone camera lenses. We applied hand
cream to a finger and left fingerprints on a film to recreate
this effect.

• Water: Smartphone cameras often encounter water
droplets in humid environments (e.g., rain, swimming
pools, seaside). We used a spray bottle to simulate this
to create water droplets on a film.

• Scratch: Scratches on camera lenses are typical, often
caused by dropping the device. We used a knife to create
scratch marks on a film to simulate this.

• Mixed: Multiple dirty films are combined to simulate
various contaminants on a camera lens.

Reusing dirty films to capture multiple scenes may lead to
learning-based methods to memorize specific dirty patterns.
To prevent this, we created new dirty films for each scene.

Image Acquisition Process
The SIDL dataset was captured in a controlled environment
that minimized the influence of external factors. We care-
fully designed this setup to ensure consistency and repro-
ducibility across all images. To clearly show the effect of
lens degradations, the scenes (or objects) chosen for imaging
were static and unchanged throughout the process. This en-
sured that any changes in image quality were caused only by
the lens degradations. Under these controlled conditions, we
selected diverse scenes representing various photographic
challenges (e.g., indoor and outdoor environments, day and
night, various lighting conditions, and subjects with differ-
ent textures and colors).
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Figure 2: Custom smartphone camera setup and image capture processes for dirty lenses. (a) The 3D-printed ‘Film holder’ is
attached to a smartphone for capturing images with PVC films called ‘dirty films,’ which contain physical damage to generate
realistic distortions. (b) The typical direction of light toward the smartphone camera for a scene generates a clean image. (c)
The dirty film in front of the smartphone camera distorts the light and results in a degraded image.
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Figure 3: The SIDL statistics. The SIDL dataset consists of
300 scenes, covering various times of day, locations, and ar-
tificial lighting intensities. Each category is carefully struc-
tured to provide a diverse and balanced composition, ensur-
ing thorough coverage of different environmental and light-
ing conditions. The data separation for the training, valida-
tion, and test sets is 240, 20, and 40 scenes.

The number of scenes for each category in the SIDL
dataset is shown in Figure 3. We captured clean reference
images for each scene without any lens degradation, which
we denote as ‘Original’. After capturing the Original im-
ages, we applied different lens degradations by changing
dirty films in our custom film holder for each scene. We
created new dirty films for each scene to prevent learning-
based methods from memorizing specific dirty patterns. All
images were captured in ProRAW format to preserve the
original sensor data with the iPhone’s automatic camera ad-
justments turned off.

Preprocessing
Following previous image restoration works (Kong et al.
2023; Zheng et al. 2024; Guo et al. 2024) that operate in
the sRGB domain, we utilized an open-source ISP (Rawpy)
to convert the captured ProRAW images to the sRGB space.

The ISP includes black-and-white level adjustment, white
balancing, gamma correction, color space conversion, and
bit-depth quantization, where ProRAW images have already
been demosaiced. The image resolution of our dataset is
4032 × 3024 pixels, which require long data loading time.
For efficient model training, the full-resolution images were
divided into 512 × 512 patches, a size commonly used in
image restoration model training.

Dataset Characteristics
The SIDL dataset, captured using various dirty films,
demonstrates a wide range of image degradations that are
similar to real-world scenarios. Each type of degradation in-
troduces unique characteristics to the captured images, af-
fecting their visual quality.

Original Captured directly using only a camera lens with-
out any film, the ’Original’ images present clean contents
and sharp patterns without damage or degradation.

Clean ‘Clean’ images, captured using an uncontaminated
film in the holder, are a reference for comparing the ef-
fects of different lens degradations. In low light conditions,
‘Clean’ and ‘Original’ (no film) images may appear simi-
lar. However, the film often increases light refraction under
intense lighting and causes visible artifacts.

Dust Dust particles on the film produced various visual
artifacts in the captured images. These particles either ob-
scured parts of the subject or caused color distortions, de-
pending on their size and location. Additionally, they scat-
tered and reflected light, degrading image quality and reduc-
ing sharpness.

Fingerprint Fingerprints on the film surface caused light
scattering, reducing image sharpness. The intensity of the
fingerprint affected the degree of blurriness due to the
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Figure 4: Visual comparison of the ‘Original,’ ‘Dust,’ and ‘Clean’ images at different degradation levels (easy, medium, hard).
(a) The difference maps illustrate the spatial distribution and severity of the degradation effects by highlighting the pixel-wise
discrepancies between the original and degraded images. (b) Frequency histograms of pixel differences between the original
and degraded images for each degradation level. The histograms provide insights into the distribution and magnitude of the
degradation impact. As the degradation level increases from easy to hard, the histograms exhibit a wider spread and higher
frequencies of larger pixel differences, indicating more severe and diverse degradation effects.

amount of oil in the print. More distinct fingerprints resulted
in more blurred images, with the blurring effect typically
spreading evenly across the entire image.

Water Water causes different types and degrees of dam-
age to the image depending on the amount and location of
water droplets on the film surface. Light scattering doesn’t
simply result in blurring but appears as if colors spread to
the surrounding areas, and circular shapes may also appear.
Additionally, as light passes through water, severe refraction
and reflection occur, causing more significant degradation
than other degradation types.

Scratch Scratch exhibits different degrees of light scatter-
ing or blurring depending on its direction and severity. Un-
like Fingerprints, which appear generally uniform across the
entire image, Scratch is characterized by localized or severe
effects in the degraded areas.

Mixed As a special case, mixed degradation was collected
for several scenes to explore more complex lens damage pat-
terns. These images were obtained by overlapping two dif-
ferent types of dirty films, resulting in more severe degrada-
tion than using a single film.

Benchmark
The SIDL dataset is structured to provide a comprehensive
benchmark for image restoration tasks. For each degradation
type, the data is divided into 240 scenes for training, 20 for
validation, and 40 for testing. The mixed degradation subset
includes 51, 15, and 20 scenes for training, validation, and
testing, respectively. Our data split is performed at the im-
age level to prevent overlap between training, validation, and
test data. We used PSNR (Peak Signal-to-Noise Ratio) to
measure the difference between degraded (or restored) im-
ages and their corresponding reference (‘Original’). Based
on these PSNR values of degraded images, our dataset is di-
vided into three difficulty levels: Easy, Medium, and Hard.
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Method Network Clean Dust Fingerprint Water Scratch Mixed Average
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

CNN

AirNet†
Easy 27.10 / 0.9329 23.40 / 0.8669 25.10 / 0.8708 24.85 / 0.8658 25.84 / 0.8917 25.30 / 0.8422 25.26 / 0.8784

Medium 26.13 / 0.8899 19.69 / 0.7577 22.53 / 0.8191 20.36 / 0.7656 21.24 / 0.8051 16.79 / 0.7542 21.12 / 0.7986
Hard 23.79 / 0.8527 16.18 / 0.7350 15.83 / 0.6432 16.64 / 0.7449 18.13 / 0.7975 14.48 / 0.7047 17.50 / 0.7463

NAFNet
Easy 36.37 / 0.9682 23.19 / 0.8197 28.12 / 0.8987 25.21 / 0.8609 27.55 / 0.8829 22.90 / 0.7569 27.22 / 0.8646

Medium 32.25 / 0.9312 21.60 / 0.7367 25.45 / 0.8470 22.53 / 0.7834 25.16 / 0.8282 20.16 / 0.7579 24.53 / 0.8141
Hard 28.56 / 0.9093 19.34 / 0.6985 17.59 / 0.6614 19.61 / 0.7256 20.24 / 0.7734 17.75 / 0.7411 20.51 / 0.7516

Transformer

Restormer
Easy 38.12 / 0.9786 25.65 / 0.9083 28.77 / 0.9186 26.25 / 0.8984 27.00 / 0.9230 22.62 / 0.8435 28.06 / 0.9117

Medium 34.07 / 0.9368 23.39 / 0.8235 26.08 / 0.8701 24.11 / 0.8400 26.32 / 0.8912 22.41 / 0.8345 26.06 / 0.8660
Hard 30.49 / 0.9338 21.41 / 0.8349 19.38 / 0.7708 20.85 / 0.8417 21.57 / 0.8528 18.86 / 0.8054 22.09 / 0.8399

FFTformer
Easy 34.58 / 0.9621 22.79 / 0.8742 28.34 / 0.9053 25.09 / 0.8925 22.59 / 0.8665 21.80 / 0.6909 25.86 / 0.8653

Medium 31.45 / 0.9137 21.23 / 0.7786 25.22 / 0.8536 22.81 / 0.8162 21.38 / 0.8315 20.64 / 0.7974 23.78 / 0.8318
Hard 28.29 / 0.9024 19.22 / 0.7935 16.55 / 0.6808 18.21 / 0.7727 18.45 / 0.7891 18.06 / 0.7886 19.80 / 0.7879

Diffusion DiffUIR†
Easy 34.51 / 0.9785 26.96 / 0.9276 28.82 / 0.9331 27.42 / 0.9220 30.14 / 0.9375 28.22 / 0.9021 29.34 / 0.9335

Medium 33.25 / 0.9375 22.11 / 0.8325 26.16 / 0.8856 24.65 / 0.8647 27.07 / 0.9105 20.32 / 0.8368 25.36 / 0.8786
Hard 29.47 / 0.9366 20.38 / 0.8602 18.93 / 0.7763 19.91 / 0.8500 21.27 / 0.8599 18.97 / 0.8409 21.71 / 0.8533

Mamba MambaIR
Easy 36.96 / 0.9807 24.92 / 0.9125 29.26 / 0.9235 26.93 / 0.9488 29.34 / 0.9322 25.30 / 0.8819 28.78 / 0.9299

Medium 34.62 / 0.9498 23.48 / 0.8298 26.62 / 0.8758 24.23 / 0.8489 27.29 / 0.8955 22.18 / 0.8365 26.40 / 0.8728
Hard 31.37 / 0.9481 21.87 / 0.8388 19.27 / 0.7750 21.02 / 0.8480 21.98 / 0.8615 19.53 / 0.8249 22.51 / 0.8494

Table 2: Quantitative comparison of restoration models on SIDL dataset. For each degradation type and level, the best score is
highlighted in red, and the second-best score is indicated with a blue. † denotes All-in-One methods.
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Figure 5: Examples of degradation level classification. The
SIDL dataset is divided into ‘Easy,’ ‘Medium,’ and ‘Hard’
categories based on the severity of degradations through
PSNR between the reference and degraded images. This ex-
ample presented the case of water droplets.

The training, validation, and test sets incorporate a balanced
representation of various difficulty levels. This categoriza-
tion enables a more detailed evaluation of restoration al-
gorithms across different degradation levels. Figure 5 illus-
trates this categorization for the ‘Water’ degradation type.

Experiments
Experimental Setup
Training Details To evaluate the SIDL dataset, we se-
lected various state-of-the-art architectures, including CNN-
based (AirNet (Li et al. 2022)), NAFNet (Chen et al.
2022)), transformer-based (Restormer (Zamir et al. 2022),
FFTformer (Kong et al. 2023)), diffusion-based (Dif-
fUIR (Zheng et al. 2024)), and Mamba-based (Mam-
baIR (Guo et al. 2024)). We employed different training
strategies depending on the network architecture. AirNet and
DiffUIR are all-in-one methods that were trained simultane-
ously with all types of degradations as input. In contrast, the
other networks were trained in a task-specific manner, fo-
cusing on individual degradation types. Each network was
trained using an NVIDIA RTX 4090 GPU.

Restoration Results of the SotA Methods
The quantitative and qualitative results on SIDL datasets
are presented in Table 2 and Figure 6. Our experimental
results reveal that DiffUIR consistently outperforms other
methods across all degradation types and levels. The prob-
abilistic approach seems particularly effective in handling
the diverse and challenging scenarios presented in the SIDL
dataset. However, the qualitative results are unsatisfactory
and present a severe degradation, requiring breakthroughs
in the follow-up studies.

Ablation Studies
Real Dirty Lens Image Restoration We conducted ex-
periments with actual smartphone lens degradations to ver-
ify that our SIDL dataset accurately reflects real-world dirty
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Figure 6: Qualitative comparisons of restoration results on SIDL datasets.
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Figure 7: Real dirty lens images v.s. SIDL images. (a) Images with camera lenses damaged by fingerprints and water droplets,
along with their restoration results, and (b) SIDL images and their restoration results. All real images and their restoration
results exhibit similar characteristics to those of SIDL images.

lens characteristics. We focused on fingerprints and water
droplets, as these are common and easily reproducible types
of dirty lenses in the real world. We applied fingerprints
and water droplets directly to smartphone camera lenses,
replicating the method used to create our ‘Dirty Film’ in
SIDL. As shown in Figure 7, the ‘Real Dirty Lens’ degra-
dation patterns closely resemble those in SIDL, exhibit-
ing similar characteristics for each degradation type. Fur-
thermore, we applied image restoration models to the real
dirty lens images and our SIDL images, resulting in sim-
ilar restoration performances. This qualitative comparison
demonstrates that SIDL successfully replicates the visual

characteristics of real dirty lens images captured from smart-
phone cameras.

Evaluation of Pretrained Networks on SIDL To demon-
strate the uniqueness of SIDL degradation patterns, Ta-
ble 3 compares the quantitative results of pretrained mod-
els without fine-tuning and the same models trained on the
SIDL training set for the cases of Water and Dust. The re-
sults show that pretrained models consistently underperform
compared to trained models on the SIDL dataset. This per-
formance gap underscores the unique and challenging na-
ture of SIDL, where the pretrained DiffUIR is an all-in-one

2551



Method Type Pretrained Trained Difference

DiffUIR Dust 20.38 / 0.8130 23.15 / 0.8734 +2.77 / 0.0604
Water 21.88 / 0.8408 23.99 / 0.8789 +2.11 / 0.0381

FFTformer Dust 19.74 / 0.7926 21.08 / 0.8154 +1.34 / 0.0228
Water 21.15 / 0.8075 22.04 / 0.8271 +0.89 / 0.0196

MambaIR Dust 19.33 / 0.7461 23.42 / 0.8604 +4.09 / 0.1143
Water 21.21 / 0.7572 24.06 / 0.8819 +2.85 / 0.1247

Table 3: Performance comparison of Pretrained vs. Trained
models on the SIDL test set.

Method / Train Set Easy Medium Hard

NAFNet / Wang et al. 25.55 / 0.8239 21.61 / 0.7235 18.16 / 0.7598

NAFNet / SIDL (scratch) 27.55 / 0.8829 25.16 / 0.8282 20.24 / 0.7734

Table 4: Comparison of NAFNet models trained on different
dirty lens datasets and evaluated on the SIDL test set.

Scenes for Training

PSNR/SSIM 10 50 100 200 240

Restormer 20.18 / 0.75 21.66 / 0.79 22.11 / 0.79 23.55 / 0.85 23.73 / 0.86

Table 5: Analysis with numbers of training scenes.

restoration model. These degradation patterns differ from
those in previous research on image restoration, necessitat-
ing task-specific adaptation through fine-tuning to improve
performance on our benchmark.

Comparison with Previous Dirty Lens Datasets Previ-
ous dirty lens datasets in Table 1 are limited in scope. Wang
et al. (Wang et al. 2023) proposed a dataset only containing
scratch degradation, while the “Let’s see clearly” (Li et al.
2021) dataset used synthetic data that appears less realistic.
In contrast, SIDL has multiple real-world degradation types
from the dirty lens. Table 4 compares the performance be-
tween models trained on each dataset and evaluated on the
SIDL test set. Note that the “Let’s see clearly” dataset (Li
et al. 2021) is not publicly available. The model trained on
Wang et al.’s dataset shows significantly lower performance
on the SIDL scratch test set, demonstrating that SIDL pro-
vides more diverse lens contamination patterns.

Analysis of Dataset Scale Table 5 shows the model per-
formance when trained with different subsets of our dataset
(10, 50, 100, 200, 240 scenes) with 15 test scenes. As the
number of training scenes increases, the restoration perfor-
mance improves significantly up to 100 scenes, after which
the improvement plateaus. This suggests that the current
dataset size is sufficient for evaluating restoration models.

Comparison with Unsupervised Approach We com-
pare DiffUIR trained on SIDL with the pretrained Au-
toDIR (Jiang et al. 2023), an unsupervised text-guided diffu-
sion model for all-in-one image restoration. We used 512×

PSNR/SSIM Easy Medium Hard

DiffUIR 27.42 / 0.9220 24.65 / 0.8647 19.91 / 0.8500
AutoDIR 26.83 / 0.9231 24.67 / 0.8650 19.19 / 0.8247

Table 6: Comparison with unsupervised learning methods.

512 patches to evaluate both models on the SIDL test set
(water) images. During inference, AutoDIR first analyzes
the input image to identify degradations from its predefined
artifact list (e.g., blur, haze, underexposure, etc), then auto-
matically generates a corresponding prompt in the form of
“A photo needs [artifact] reduction”. As shown in Table 6,
both models achieve similar restoration performance across
different difficulty levels. However, DiffUIR processes each
image in 4.15 seconds with 3 timesteps for testing while Au-
toDIR requires approximately 90 seconds (∼22× slower).

Limitation
Our SIDL dataset, while comprehensive, has some limita-
tions. We focused on common types of lens degradation, but
real-world scenarios may present an even wider range of im-
perfections. The complexity of lens contamination in actual
use might exceed our simulations. Future work could expand
this dataset to include more varied degradation types, further
improving its representation of real-world conditions.

Conclusion
This paper addresses the need for a high-quality image
dataset for image restoration research in smartphone cam-
eras. We propose a public dataset called ‘Smartphone Image
with Dirty Lens (SIDL),’ consisting of 1,588 degraded im-
ages and their corresponding original images. Instead of im-
age synthesis, we capture realistic degradations by directly
applying physical damage to PVC films. The SIDL dataset
includes five types of degradation in smartphone cameras
and mixed degradations in which these types appear simul-
taneously. Experiments demonstrate that images in SIDL
closely resemble those where damage is directly applied to
the camera lens without films. Benchmarking results of ex-
isting methods show that SIDL presents a highly challeng-
ing task. This dataset will facilitate diverse follow-up stud-
ies, significantly contributing to restoring image degrada-
tions commonly encountered in everyday life.
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