

SIDL: A Real-World Dataset for Restoring Smartphone Images with Dirty Lenses

Sooyoung Choi, Sungyong Park, Heewon Kim Soongsil University

{csy010921, ejqdl}@soongsil.ac.kr, hwkim@ssu.ac.kr

Motivation

- Smartphone cameras have become an essential tool in everyday life.
- However, their lenses are often exposed to various contaminants.

Dust particle

Scratched

Fingerprint

Water drop

Can current restoration models effectively handle

lens contamination problems?

Motivation

 State-of-the-art restoration models struggled to handle the lens contamination in the real-world.

Why do current models fail with lens contamination problems?

→ The first step is to create datasets that capture lens contamination images.

Motivation

 Previous research has introduced numerous datasets to address various types of image degradation and environmental conditions.

Type	Dataset	Resolution	Device	Real/Synthetic	Multiple Distortions	RAW Data Available	Ref images	Distort images
Deblurring	GOPRO	1280 x 720	Digital camera	Synthetic	X	X	3,214	3,214
	HIDE	1280×720	Digital camera	Synthetic	X	×	8,422	8,422
	RealBlur	680 x 773	Digital camera	Synthetic	X	X	232	4,738
Denoising	SIDD	5312 x 2988	Smartphone	Real	X	✓	200	30,000
	DND	7360 x 4912	Smartphone	Real	X	√	50	50
	O-HAZE	5456 x 3632	Digital camera	Real	X	✓	45	45
Environmental conditions	Dense-Haze	5456 x 3632	Digital camera	Real	X	✓	33	33
	MPID	1920 x 990	Digital camera	Both	✓	×	4,543	4,543
	LOL	400 x 600	Digital camera	Real	X	×	500	500
Dirty lens	Wang et al. 2023	1920 x 1080	Digital camera	Real	X	×	1,251	1,251
	Let's see clearly	384 x 384	Digital camera	Synthetic	✓	X	18,000	18,000
	SIDL (Ours)	4032 × 3024	Smartphone	Real	✓	1	300	1,588

However, the previous dirty lens datasets are *limited in scope*.

→ This makes it difficult to develop effective restoration methods.

- 1,588 image pairs from 300 scenes.
- Includes six types of lens contamination.
- Captured under various conditions: day, night, indoor, outdoor, lighting intensity

- General Smartphone Image Capture Process
 - Directly damaging the lens is impractical and expensive.

How can we replicate real-world contamination during the image acquisition process?

SIDL (Smartphone Image with Dirty Lens) Capture Process

This approach allows us to create a diverse range of contamination scenarios for the SIDL dataset.

Mix

Image Acquisition Setup

Dirty films

Created new dirty films for each scene to prevent pattern memorization.

- Benchmark & Statics
 - For each degradation type, the dataset is split into 240 scenes for training, 20 for validation, and 40 for testing.
 - Difficulty levels for evaluation: Easy, Medium, Hard (based on PSNR).

Experiments

Quantitative comparison of restoration methods on SIDL datasets

Method	Network		Clean PSNR/SSIM	Dust PSNR/SSIM	Fingerprint PSNR/SSIM	Water PSNR/SSIM	Scratch PSNR/SSIM	Mixed PSNR/SSIM	Average PSNR/SSIM
CNN	AirNet	Easy Medium	27.10 / 0.9329 26.13 / 0.8899	23.40 / 0.8669 19.69 / 0.7577	25.10 / 0.8708 22.53 / 0.8191	24.85 / 0.8658 20.36 / 0.7656		25.30 / 0.8422 16.79 / 0.7542	25.26 / 0.8784 21.12 / 0.7986
		Hard Easy	23.79 / 0.8527 36.37 / 0.9682	16.18 / 0.7350 23.19 / 0.8197	15.83 / 0.6432 28.12 / 0.8987	16.64 / 0.7449 25.21 / 0.8609	18.13 / 0.7975 27.55 / 0.8829	14.48 / 0.7047 22.90 / 0.7569	17.50 / 0.7463 27.22 / 0.8646
	NAFNet	Medium Hard	32.25 / 0.9312 28.56 / 0.9093	21.60 / 0.7367 19.34 / 0.6985	25.45 / 0.8470 17.59 / 0.6614	22.53 / 0.7834 19.61 / 0.7256		20.16 / 0.7579 17.75 / 0.7411	24.53 / 0.8141 20.51 / 0.7516
Transformer —	Restormer	Easy Medium Hard	38.12 / 0.9786 34.07 / 0.9368 30.49 / 0.9338	25.65 / 0.9083 23.39 / 0.8235 21.41 / 0.8349	28.77 / 0.9186 26.08 / 0.8701 19.38 / 0.7708	26.25 / 0.8984 24.11 / 0.8400 20.85 / 0.8417	27.00 / 0.9230 26.32 / 0.8912 21.57 / 0.8528	22.41 / 0.8345	28.06 / 0.9117 26.06 / 0.8660 22.09 / 0.8399
	FFTformer	Easy Medium Hard	34.58 / 0.9621 31.45 / 0.9137 28.29 / 0.9024	22.79 / 0.8742 21.23 / 0.7786 19.22 / 0.7935	28.34 / 0.9053 25.22 / 0.8536 16.55 / 0.6808		22.59 / 0.8665 21.38 / 0.8315 18.45 / 0.7891	21.80 / 0.6909 20.64 / 0.7974 18.06 / 0.7886	25.86 / 0.8653 23.78 / 0.8318 19.80 / 0.7879
Diffusion	DiffUIR	Easy Medium Hard	34.51 / 0.9785 33.25 / 0.9375 29.47 / 0.9366	22.11 / 0.8325	28.82 / 0.9331 26.16 / 0.8856 18.93 / 0.7763	24.65 / 0.8647	27.07 / 0.9105	20.32 / 0.8368	29.34 / 0.9335 25.36 / 0.8786 21.71 / 0.8533
Mamba	MambaIR	Easy Medium Hard	36.96 / 0.9807 34.62 / 0.9498 31.37 / 0.9481		29.26 / 0.9235 26.62 / 0.8785 19.27 / 0.7750	24.23 / 0.8489	27.29 / 0.8955	22.18 / 0.8365	26.40 / 0.8728

Experiments

- Qualitative comparison of restoration methods on SIDL datasets
 - Severe degradation remains a challenge for future research

Experiments: Ablation Studies

- Validation with Real Dirty Lenses
 - SIDL successfully replicates the visual characteristics of real dirty lens images.

Experiments: Ablation Studies

 Performance comparison of Pretrained vs. Trained models on the SIDL test set.

Method	Type	Pretrained	Trained	Difference
DiffUIR	Dust	20.38 / 0.8130	23.15 / 0.8734	+2.77 / 0.0604
	Water	21.88 / 0.8408	23.99 / 0.8789	+2.11 / 0.0381
FFTformer	Dust	19.74 / 0.7926	21.08 / 0.8154	+1.34 / 0.0228
	Water	21.15 / 0.8075	22.04 / 0.8271	+0.89 / 0.0196
	Dust	19.33 / 0.7461	23.42/ 0.8604	+4.09 / 0.1143
MambaIR	Water	21.21 / 0.7572	24.06 / 0.8819	+2.85 / 0.1247

 Comparison of NAFNet models trained on different dirty lens datasets and evaluated on the <u>SIDL test set.</u>

Method / Train Set	Easy	Medium	Hard
NAFNet / Wang et al.	25.55 / 0.8239	21.61 / 0.7235	18.16 / 0.7598
NAFNet / SIDL (scratch)	27.55 / 0.8829	25.16 / 0.8282	20.24 / 0.7734

Summary

- SIDL provides a realistic dataset of 1,588 image pairs specifically designed for smartphone lens contamination restoration.
- Our experiments validate that SIDL effectively represents real-world lens contamination problems.
- SIDL will be a valuable benchmark for developing better restoration methods for everyday smartphone camera problems.
- We hope SIDL leads to diverse future research in this underexplored area of image restoration.

Reality Lab
Soongsil University

February 25 – March 4, 2025 | Philadelphia, Pennsylvania, USA

Thank You

Benchmark website → https://sidl-benchmark.github.io

