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e Embodied Al aims to train agents that can perceive, reason, and act within physically
grounded environments, ultimately enabling robots to perform complex tasks in the
real world.
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Robotic Manipulation in Embodied Al \_

e Goal: Perceive and manipulate objects to complete designated tasks.

e Challenge: Data scaling is one of the key issues in robotic manipulation.

{ . . > _Q . L
r . \ ! : & -
. ' ‘ L4 J l
’ s _.::. \ \¢ ] " S - ety
b o~ 'y $ | \
_ ( . - o .
2 ] . . . - :.'
. ‘ ! 7 = i
- -~ ‘ A -
- = =« ] o ok h"-
| p- \_\f — X el | -
< y: 2 \
4 ; o SXax e
- . 7 -4 A ll
e '—\ e A} 2
AR, e W g p—— . ;!' @

Human-teleoperated data collection

Simulation datasets

=» This approach remains costly, slow, and labor-intensive to scale.



Comparison of Data Generation Methods (W B Reality

e Previous research has developed methods for generating either static scenes
or robot actions, advancing embodied Al data creation.

Static Scene Generation Action Generation Dynamic Scene Generation

“The room has a sofa, table, red bottle, and “Pick up the bottle” “Pick up the bottle ten centimeter”
Franka robot”
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Proposed Method : DynScene

e Framework Overview
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Data Representation for Dynamic Scene \ I}

e A dynamic scene pairs static scene s with residual action a for scalable augmentation.

e Enables diverse and coherent environment-behavior combinations.
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[d Ensures consistent learning across identical tasks,

independent of static scenes.

[d Applicable to any static scene for action augmentation.




Static Scene Generation §Y B Reality Lab

e Diffusion model effectively generates realistic static scenes aligned with instructions.

e However, requires refinement for physical plausibility and task accessibility.

/ Static Scene Generation \
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Refinement

e Two refinement techniques ensure physical feasibility and task execution.

Layout sampling to select collision-free room configurations using position difference.

Quaternion quantization stabilizes object orientations by discretizing rotations.
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Action Generation and Augmentation \

e Action generation uses diffusion model conditioned
Action Generation
on static scenes. / \

Denoising Step X (T-1)
£(¢)scene - = {"ao,e,tmf _ €¢(at7t5 S)HZ]

e Action augmentation generates multiple trajectories

from single static scene.

Ex) 10 scenes x 10 actions = 100 diverse dynamic scenes.

Scalable augmentation

Spatial generalization




Filtering Invalid Dynamic Scenes (¥ 1 Reality

e Inaccurate actions can degrade agent performance and cause task failures.

Generated dynamic scenes undergo physics simulation verification in NVIDIA Isaac Sim.

Verification

/
/

High-quality data
improves performance.

Only successful scenes pass



Experiments \

e Comparison with Human Expert

ARNOLD benchmark contains human-demonstrated manipulation trajectories collected via

Xbox controller.

Task Time (sec) Success Rate (%)

P.OBJECT 2.53 =10.02 92.00
R.OBJECT 2.852 &= 10.02 88.00
C.CABINET 2860 1+ .02 58.00
O.CABINET 2.0 + 002 37.00
C.DRAWER 2.52 + D.02 95.00
O.DRAWER 2.52 == 0.02 41.00
P.WATER 2.52. 1+ .02 83.00
T.WATER 202 + D2 62.00
Average 2.52 ='0.02

DynScene (Ours)

ARNOLDT [7] Average 67.50

= DynScene generates training data with success rate than human experts.



Experiments \

e Comparison with Human Expert

Analyzed end-effector position changes in ‘pour water' task.

Y-axis remains similar due to task-specific vertical precision requirements
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=> Wider distributions along the x- and z- axes than ARNOLD, indicating



Experiments \

e Comparison of Action Diversity

DynScene with ARNOLD training data, using the same number of valid dynamic scenes per task.

Varied action paths Temporal variability Broader gripper exploration

Fréchet Distance (FD) 1 Dynamic Time Warping (DTW) T Spatial Coverage (SC) 1

ARNOLD [ ] DynScene (Ours) ARNOLD [ ] DynScene (Ours) ARNOLD [ ] DynScene (Ours)

Pickup Object 32.85
Reorient Object 23.49
Close Cabinet £ Y0y

Task

Open Cabinet 40.83
Close Drawer 24.85
Open Drawer 28.36
Pour Water 20.46

Transfer Water 18.52

Average 28.39

= DynScene produces more and actions than the training data.



Experiments \

o Text-Conditioned Scene Generation Results

Generate diverse and dynamic scenes from identical text prompts.
Variations in object shapes, initial states, and room layouts.

Preserves physical plausibility and semantic alignment.




Experiments \

e Evaluation with manipulation agents
ARNOLD-only vs. ARNOLD + DynScene combination performance comparison.

Particularly effective for complex manipulation tasks.

Method P.OBJECT R.OBJECT O.DRAWER C.DRAWER O.CABINET C.CABINET P.WATER T.WATER AVERAGE

BC-Lang-CNN (ARNOLD) 5.00 0.00 0.00 20.00 0.00 10.00 0.00 0.00 4.35
BC-Lang-CNN (DynScene + ARNOLD) 5.00 0.00 0.00 25.00 0.00 20.00 0.00 0.00 6.20

BC-Lang-ViT (ARNOLD) 1.67 0.00 0.00 35.00 0.00 10.00 0.00 0.00 5.84
BC-Lang-ViT (DynScene + ARNOLD) 5.00 0.00 0.00 45.00 0.00 33.33 0.00 0.00 10.42

PerAct (ARNOLD) 88.81 3.90 26.05 33.78 11:39 20.39 34.33 14.29 29.14
PerAct (DynScene + ARNOLD) 90.00 20.00 38.33 30.00 16.67 31.67 30.00 21.67 34.79

PerAct-PSA (ARNOLD) 90.00 30.00 41.67 51.67 20.00 15.00 63.33 20.00 41.46
PerAct-PSA (DynScene + ARNOLD) 95.00 25.00 43.33 43.33 45.00 38.33 46.67 28.33 45.62

= Integrating DynScene data robotic manipulation performance.



ARNOLD Challenge (cvPr2025 Embodied Al Workshop) (¥ 1 Reality Lab

e ARNOLD Challenge is a robotic manipulation challenge.

ARNOLD Benchmark includes 8 manipulation tasks with continuous states and novel
object/scene generalization.
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Results on ARNOLD Challenge \_

e We trained foundation models using DynScene-generated data.

- PerAct (AR) PerAct (AR +DS) - OpenVLA (AR) = OpenVLA (AR +DS)

AR : ARNOLD, DS : DynScene
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Summary \_

e Unified framework generates dynamic scenes from text instructions.

e Residual actions enable spatial generalization across configurations.
e Physics-based refinement techniques ensuring collision-free and stable scene generation.

e Efficient data generation achieves 26.8x faster speed with superior agent
performance.
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