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Introduction

● Embodied AI aims to train agents that can perceive, reason, and act within physically 
grounded environments, ultimately enabling robots to perform complex tasks in the 
real world.
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Robotic Manipulation in Embodied AI

● Embodied AI aims to train agents that can perceive, reason, and act within 
physically grounded environments, ultimately enabling robots to perform complex 
tasks in the real world.

● Robotic manipulation in embodied AI critically depends on large-scale, high-quality 
datasets that reflect realistic object interactions and physical dynamics.
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● Goal: Perceive and manipulate objects to complete designated tasks.
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➔ This approach remains costly, slow, and labor-intensive to scale.
Slow Costly

Human-teleoperated data collection

● Challenge: Data scaling is one of the key issues in robotic manipulation.

Simulation datasets



Comparison of Data Generation Methods

● Previous research has developed methods for generating either static scenes 
or robot actions, advancing embodied AI data creation.
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Proposed Method : DynScene
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Data Representation for Dynamic Scene

o: Target object

r: Robot base

z: Room layouts

Residual Coordinates Absolute Coordinates

Residual Coordinates 

● A dynamic scene pairs static scene s with residual action a for scalable augmentation.

● Enables diverse and coherent environment-behavior combinations.

❏ Ensures consistent learning across identical tasks, 

independent of static scenes.

❏ Applicable to any static scene for action augmentation.

Robot ActionStatic Scene

Gripper stateResidual position

Residual quaternion



Static Scene Generation
● Overview ● Diffusion model effectively generates realistic static scenes aligned with instructions.
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● However, requires refinement for physical plausibility and task accessibility.



Refinement
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● Layout Sampling  (eq.6)

● Quaternion Quantization (eq.7) 

● Two refinement techniques ensure physical feasibility and task execution.
● Layout sampling to select collision-free room configurations using position difference.

● Quaternion quantization stabilizes object orientations by discretizing rotations.



Action Generation and Augmentation
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● Action generation uses diffusion model conditioned 

on static scenes.

● Ex) 10 scenes × 10 actions = 100 diverse dynamic scenes.

● Scalable augmentation

● Spatial generalization
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● Action augmentation generates multiple trajectories 

from single static scene.



Filtering Invalid Dynamic Scenes
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● Inaccurate actions can degrade agent performance and cause task failures.
● Generated dynamic scenes undergo physics simulation verification in NVIDIA Isaac Sim.

Only successful scenes pass

High-quality data 
improves performance.



Experiments
● Comparison with Human Expert

➔  DynScene generates training data 26× faster with 1.8× higher success rate than human experts. 

● ARNOLD benchmark contains human-demonstrated manipulation trajectories collected via 

Xbox controller.



Experiments
● Comparison with Human Expert

➔ Wider distributions along the x- and z- axes than ARNOLD, indicating greater action diversity.

● Analyzed end-effector position changes in 'pour water' task.

● Y-axis remains similar due to task-specific vertical precision requirements



Experiments
● Comparison of Action Diversity

● DynScene with ARNOLD training data, using the same number of valid dynamic scenes per task.

Broader gripper explorationTemporal variabilityVaried action paths

➔ DynScene produces more diverse and spatially expansive actions than the training data.



Experiments
● Text-Conditioned Scene Generation Results

● Generate diverse and dynamic scenes from identical text prompts.

● Variations in object shapes, initial states, and room layouts.

● Preserves physical plausibility and semantic alignment.



Experiments

● Evaluation with manipulation agents

➔ Integrating DynScene data significantly boosts robotic manipulation performance.

● ARNOLD-only vs. ARNOLD + DynScene combination performance comparison.

● Particularly effective for complex manipulation tasks.



ARNOLD Challenge (CVPR2025 Embodied AI Workshop)

● ARNOLD Challenge is a robotic manipulation challenge.

● ARNOLD Benchmark includes 8 manipulation tasks with continuous states and novel 
object/scene generalization.



Results on ARNOLD Challenge

● We trained foundation models using DynScene-generated data.
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Summary
● Unified framework generates dynamic scenes from text instructions.

✓ 300 1,588Fail to interaction

● Residual actions enable spatial generalization across configurations.

● Physics-based refinement techniques ensuring collision-free and stable scene generation.

● Efficient data generation achieves 26.8× faster speed with superior agent 
performance.
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