DynScene: Scalable Generation of Dynamic Robotic Manipulation Scenes for Embodied AI Sangmin Lee, Sungyong Park, Heewon Kim Soongsil University {sm32289, ejqdl010}@gmail.com, hwkim@ssu.ac.kr #### Introduction Embodied AI aims to train agents that can perceive, reason, and act within physically grounded environments, ultimately enabling robots to perform complex tasks in the real world. #### Robotic Manipulation in Embodied AI - Goal: Perceive and manipulate objects to complete designated tasks. - Challenge: Data scaling is one of the key issues in robotic manipulation. Human-teleoperated data collection Simulation datasets → This approach remains costly, slow, and labor-intensive to scale. #### Comparison of Data Generation Methods Previous research has developed methods for generating either static scenes or robot actions, advancing embodied AI data creation. "The room has a sofa, table, red bottle, and Franka robot" Inadequate object position for task execution #### **Action Generation** "Pick up the bottle" Limited data diversity for interaction #### **Dynamic Scene Generation** "Pick up the bottle ten centimeter" Successful interaction and diverse data #### Proposed Method: DynScene #### Framework Overview ### Data Representation for Dynamic Scene - A dynamic scene pairs static scene s with residual action a for scalable augmentation. - Enables diverse and coherent environment-behavior combinations. **Absolute Coordinates** **Residual Coordinates** - ☐ Ensures consistent learning across identical tasks, independent of static scenes. - **■** Applicable to any static scene for action augmentation. #### Static Scene Generation - Diffusion model effectively generates realistic static scenes aligned with instructions. - However, requires refinement for physical plausibility and task accessibility. #### Refinement - Two refinement techniques ensure physical feasibility and task execution. - Layout sampling to select collision-free room configurations using position difference. - Quaternion quantization stabilizes object orientations by discretizing rotations. Layout Sampling (eq.6) $$egin{aligned} \hat{r} = rg \min_r (\|oldsymbol{p}_r^{ ext{obj}} - ilde{oldsymbol{p}}^{ ext{obj}}\|^2 + \|oldsymbol{p}_r^{ ext{base}} - ilde{oldsymbol{p}}^{ ext{base}}\|^2) \ oldsymbol{\hat{z}} = oldsymbol{z}_{\hat{r}} \end{aligned}$$ Quaternion Quantization (eq.7) $$\hat{m{q}}^{ ext{obj}} = ext{round}\left(rac{ ilde{m{q}}^{ ext{obj}}}{\delta} ight) \cdot \hat{m{d}}$$ #### Action Generation and Augmentation Action generation uses diffusion model conditioned on static scenes. $$\mathcal{L}(\phi)_{ ext{scene}} := \mathbb{E}_{oldsymbol{a}_0,\epsilon,t}[\|\epsilon - \epsilon_\phi(oldsymbol{a}_t,t;\mathbf{s})\|^2]$$ - Action augmentation generates multiple trajectories from single static scene. - Ex) 10 scenes × 10 actions = 100 diverse dynamic scenes. - Scalable augmentation - Spatial generalization ### Filtering Invalid Dynamic Scenes - Inaccurate actions can degrade agent performance and cause task failures. - Generated dynamic scenes undergo physics simulation verification in NVIDIA Isaac Sim. - Comparison with Human Expert - ARNOLD benchmark contains human-demonstrated manipulation trajectories collected via Xbox controller. | Method | Task | Time (sec) | Success Rate (%) | | | |-------------------------|-----------|-----------------|------------------|--|--| | | P.OBJECT | 2.53 ± 0.02 | 92.00 | | | | | R.OBJECT | 2.52 ± 0.02 | 88.00 | | | | | C.CABINET | 2.50 ± 0.02 | 58.00 | | | | DynScene (Ours) | O.CABINET | 2.53 ± 0.02 | 37.00 | | | | | C.DRAWER | 2.52 ± 0.02 | 95.00 | | | | | O.DRAWER | 2.52 ± 0.02 | 41.00 | | | | | P. WATER | 2.52 ± 0.02 | 83.00 | | | | | T. WATER | 2.52 ± 0.02 | 62.00 | | | | | Average | 2.52 ± 0.02 | 69.50 | | | | ARNOLD [†] [7] | Average | 67.50 | 37.50 | | | → DynScene generates training data 26× faster with 1.8× higher success rate than human experts. - Comparison with Human Expert - Analyzed end-effector position changes in 'pour water' task. - Y-axis remains similar due to task-specific vertical precision requirements → Wider distributions along the x- and z- axes than ARNOLD, indicating greater action diversity. - Comparison of Action Diversity - DynScene with ARNOLD training data, using the same number of valid dynamic scenes per task. | | <u>Varied action paths</u> | | <u>Temporal va</u> | <u>iriability</u> | Broader gripper exploration | | | |---|---|--|---|--|---|--|--| | | | | | | | | | | Task | Fréchet Distance (FD) ↑ | | Dynamic Time Warping (DTW) ↑ | | Spatial Coverage (SC) ↑ | | | | | ARNOLD [7] | DynScene (Ours) | ARNOLD [7] | DynScene (Ours) | ARNOLD [7] | DynScene (Ours) | | | Pickup Object Reorient Object Close Cabinet Open Cabinet Close Drawer Open Drawer Pour Water Transfer Water | 32.85
23.49
37.77
40.83
24.85
28.36
20.46
18.52 | 36.38
27.45
43.85
40.59
25.55
24.36
26.52
17.84 | 54.77
27.98
76.72
81.71
35.47
44.98
31.09
27.90 | 61.23
35.56
86.01
83.54
37.86
39.51
61.62
36.65 | 2.94
2.30
4.30
2.92
1.66
2.67
2.96
2.89 | 3.29
2.73
3.21
3.17
3.78
4.04
4.91
3.85 | | | Average | 28.39 | 30.32 | 47.58 | 55.25 | 2.83 | 3.62 | | → DynScene produces more diverse and spatially expansive actions than the training data. - Text-Conditioned Scene Generation Results - Generate diverse and dynamic scenes from identical text prompts. - Variations in object shapes, initial states, and room layouts. - Preserves physical plausibility and semantic alignment. - Evaluation with manipulation agents - ARNOLD-only vs. ARNOLD + DynScene combination performance comparison. - Particularly effective for complex manipulation tasks. | Method | Р.Овјест | R.Овјест | O.Drawer | C.Drawer | O.CABINET | C.CABINET | P. WATER | T. WATER | AVERAGE | |---|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--------------------|-----------------------|-----------------------| | BC-Lang-CNN (ARNOLD) BC-Lang-CNN (DynScene + ARNOLD) | 5.00
5.00 | 0.00 | 0.00
0.00 | 20.00
25.00 | 0.00
0.00 | 10.00
20.00 | 0.00 | 0.00 | 4.35
6.20 | | BC-Lang-ViT (ARNOLD) BC-Lang-ViT (DynScene + ARNOLD) | 1.67
5.00 | 0.00 | 0.00
0.00 | 35.00
45.00 | 0.00 | 10.00
33.33 | 0.00 | 0.00 | 5.84
10.42 | | PerAct (ARNOLD) PerAct (DynScene + ARNOLD) | 88.81
90.00 | 3.90
20.00 | 26.05
38.33 | 33.78 30.00 | 11.59
16.67 | 20.39
31.67 | 34.33 30.00 | 14.29
21.67 | 29.14
34.79 | | PerAct-PSA (ARNOLD)
PerAct-PSA (DynScene + ARNOLD) | 90.00
95.00 | 30.00 25.00 | 41.67
43.33 | 51.67 43.33 | 20.00
45.00 | 15.00
38.33 | 63.33 46.67 | 20.00
28.33 | 41.46
45.62 | → Integrating DynScene data significantly boosts robotic manipulation performance. #### ARNOLD Challenge (CVPR2025 Embodied Al Workshop) - ARNOLD Challenge is a robotic manipulation challenge. - ARNOLD Benchmark includes 8 manipulation tasks with continuous states and novel object/scene generalization. #### Results on ARNOLD Challenge • We trained foundation models using DynScene-generated data. ## 1st Place | Rank \$ | Participant team 🜲 | SR (↑) | |---------|-------------------------|----------------| | 1 | RealityLab | 0.49 | | 2 | EBDAI | 0.45 | | 3 | Fun Guy (Fusion(SD&PC)) | 0.39 | | 4 | larr (final) | 0.32 | | 5 | Windboy (DT1) | 0.25 | | 6 | MilkyWay | 0.25 | | 7 | MCC-EAI | 0.25 | | 8 | Host_31221_Team | 0.22 | #### Summary - Unified framework generates dynamic scenes from text instructions. - Residual actions enable spatial generalization across configurations. - Physics-based refinement techniques ensuring collision-free and stable scene generation. - Efficient data generation achieves 26.8× faster speed with superior agent performance. ## Thank You