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Robotic Manipulation in Embodied Al (W 1 Re:

e Goal: Perceive and manipulate objects to complete designated tasks.

e Challenge: Real-world manipulation requires generalization to unseen scenarios.
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— To support this, ARNOLD provides novel objects, scenes, and goal states in evaluation.



Foundation Model for Robotic Manipulation \

e Foundation models are a promising approach to generalization in robotic manipulation.

e However, even these models require fine-tuning data to optimize for specific tasks.
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e The scale and variety of training data for effective fine-tuning is still . —



Exploring Data Requirements for Fine-Tuning \

e In this challenge, we investigate:

We explore strategies to generate training data effective for agent learning.

e Our solution: [1] - robotic manipulation scene generation method enabling
scalable dataset creation.

[1] Sangmin Lee, Sungyong Park, and Heewon Kim, "DynScene: Scalable Generation of Dynamic Robotic Manipulation Scenes for Embodied Al", CVPR 2025.



Proposed Method

DynScene
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e Framework Overview
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Part 1: Static Scene Generation (¥ K Reality Lak

e Diffusion model effectively generates realistic static scenes aligned with instructions.

e However, requires refinement for physical plausibility and task accessibility.
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Part 1: Static Scene Generation \

e Diffusion model effectively generates realistic static scenes aligned with instructions.

e However, requires refinement for physical plausibility and task accessibility.
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Part 2: Action Generation and Augmentation (Y 1 Reality Lak

e Action generation uses diffusion model conditioned

on static scenes.
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Part3: Filtering Invalid Dynamic Scenes
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e Inaccurate actions can degrade agent performance and cause task failures.

Generated dynamic scenes undergo physics simulation verification in NVIDIA Isaac Sim.

Verification

Only successful scenes pass

High-quality data
improves performance.



Implementation Details \

Training OpenVLA with state interpolation augmentation
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(3rd place in 2024)

[2] Kim et al., "OpenVLA: An Open-Source Vision-Language-Action Model", arXiv:2406.09246 (2024).



Results (¥ K Reality Lab

e We trained foundation models using DynScene-generated data.
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