

Fine-tuning Robotic Foundation Model Using Dynamic Scene Generation

Challenge Team: Reality Lab

Dowon Kim, Chaewoo Lim, Sungyong Park, Sangmin Lee, Heewon Kim Soongsil University

Robotic Manipulation in Embodied AI

- Goal: Perceive and manipulate objects to complete designated tasks.
- Challenge: Real-world manipulation requires generalization to unseen scenarios.

→ To support this, ARNOLD provides novel objects, scenes, and goal states in evaluation.

Foundation Model for Robotic Manipulation

- Foundation models are a promising approach to generalization in robotic manipulation.
- However, even these models require fine-tuning data to optimize for specific tasks.

Exploring Data Requirements for Fine-Tuning

• In this challenge, we investigate:

We explore strategies to generate training data effective for agent learning.

 Our solution: DynScene [1] - robotic manipulation scene generation method enabling scalable dataset creation.

Proposed Method: DynScene

Framework Overview

Part 1: Static Scene Generation

- Diffusion model effectively generates realistic static scenes aligned with instructions.
- However, requires refinement for physical plausibility and task accessibility.

Part 1: Static Scene Generation

- Diffusion model effectively generates realistic static scenes aligned with instructions.
- However, requires refinement for physical plausibility and task accessibility.

Part 2: Action Generation and Augmentation

 Action generation uses diffusion model conditioned on static scenes.

$$\mathcal{L}(\phi)_{ ext{scene}} := \; \mathbb{E}_{oldsymbol{a}_0,\epsilon,t}[\|\epsilon - \epsilon_\phi(oldsymbol{a}_t,t;\mathbf{s})\|^2]$$

Residual Coordinates

Part3: Filtering Invalid Dynamic Scenes

- Inaccurate actions can degrade agent performance and cause task failures.
 - Generated dynamic scenes undergo physics simulation verification in NVIDIA Isaac Sim.

Only *successful* scenes pass

Implementation Details

Training OpenVLA with state interpolation augmentation

State Interpolation

(3rd place in 2024)

OpenVLA [2]

Results

• We trained foundation models using DynScene-generated data.

Thank you

https://reality.ssu.ac.kr/